Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt metal release.

نویسندگان

  • J I Mujika
  • B Escribano
  • E Akhmatskaya
  • J M Ugalde
  • X Lopez
چکیده

Serum transferrin (sTf) carries iron in blood serum and delivers it into cells by receptor-mediated endocytosis. The protein can also bind other metals, including aluminum. The crystal structures of the metal-free and metal-loaded protein indicate that the metal release process involves an opening of the protein. In this process, Lys206 and Lys296 lying in the proximity of each other form the dilysine pair or, so-called, dilysine trigger. It was suggested that the conformational change takes place due to variations of the protonation state of the dilysine trigger at the acidic endosomal pH. In 2003, Rinaldo and Field (Biophys. J. 85, 3485-3501) proposed that the dilysine trigger alone can not explain the opening and that the protonation of Tyr188 is required to prompt the conformational change. However, no evidence was supplied to support this hypothesis. Here, we present several 60 ns molecular dynamics simulations considering various protonation states to investigate the complexes formed by sTf with Fe(III) and Al(III). The calculations demonstrate that only in those systems where Tyr188 has been protonated does the protein undergo the conformational change and that the dilysine trigger alone does not lead to the opening. The simulations also indicate that the metal release process is a stepwise mechanism, where the hinge-bending motion is followed by the hinge-twisting step. Therefore, the study demonstrates for the first time that the protonation of Tyr188 is required for the release of metal from the metal loaded sTf and provides valuable information about the whole process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe

Human serum transferrin (hTF) binds Fe(III) tightly but reversibly, and delivers it to cells via a receptor-mediated endocytosis process. The metal-binding and release result in significant conformational changes of the protein. Here, we report the crystal structures of diferric-hTF (Fe(N)Fe(C)-hTF) and bismuth-bound hTF (Bi(N)Fe(C)-hTF) at 2.8 and 2.4 Å resolutions respectively. Notably, the N...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Identification of Amino Acids Involve in Indium Binding To Serum Human Apo-Transferrin

Indium is a heavy metal belonging to group IIIa. It is used as a radioimaging and chemotherapeutic agent in diagnosis and also in the treatment of cancers. It is believed that indium may interfere with iron metabolism and reduce cell growth in cancer tissue. The present report was established to study the binding of iron and indium to apo-transferrin (apo-tf) and to identify amino acids involv...

متن کامل

Study of the Binding of Iron and Indium to Human Serum Apo-Transferrin

Indium is a heavy metal belonging to group IIIa. It is believed that indium may interfere with iron metabolism from the sites of absorption, transportation, utilization and storage in the cells. The present investigation was established to study and compare the binding of iron and indium to human apo-transferrin (apo-tf). Pure human apo-tf was used and the binding activity of iron and indium, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 51 35  شماره 

صفحات  -

تاریخ انتشار 2012